
Optimization Theory and Algorithm Lecture 12 - 10/27/2021

Lecture 12

Lecturer: Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Junbo Hao

1 Federated Optimization

Federated learning (FL) enables a large amount of edge computing devices to jointly optimize (learn) a

model without data sharing. FL has three unique characters that distinguish it from the standard parallel

optimization.

• The training data are massively distributed over an incredibly large number of devices, and the

connection between the central server and a device is slow.

• The FL system does not have control over user’s device (stragglers).

• The training data are non-i.i.d.

Problem Formulation:

min
x

{
f (x) =

K

∑
k=1

pk fk(x)

}
(1)

where K is the number of devices, and pk is the weight of the kth device such that pk > 0 and ∑k pk = 1.

Suppose that kth device hold s mk training data: zk,1, . . . , zk,mk
, then

fk(x) =
1

mk

mk

∑
j=1

`(x; zk,j).

Example 1.1. (Federated Least Squares Problem) Suppose that we have K banks, they would like to jointly

to train a model to predict the customer’s income for “user profile” or to train a score system to estimate

their financial credit (see Figure 1). They adopt a linear regression model, then

min
x

1
2
‖Ax− b‖2 =

1
2

K

∑
k=1
‖Akx− bk‖2,

where

A =

A1
...

AK

 ∈ Rm×n, b =

b1
...

bK

 ∈ Rm.

1

Figure 1: Federated Learning for Credit Scoring

However, we cannot combine the personal data set together due to the sensitive information and law

regulations (E.g., GDPR). Then the idea is to transmit some information to a central server without sharing

any dataset.

For the kth bank, it considers

min
x

1
2
‖Akx− bk‖2.

Denote an operator Gk(x) = x− s∇x(
1
2‖Akx− bk‖2) = (I − sA>k Ak)x + sA>k bk. The federated gradient

descent algorithm is

Step 1: xt+1/2
k := GE

k (x
t
k), (2)

Step 2: xt+1
k :=

1
K

K

∑
k=1

xt+1/2
k , (3)

where GE
k (x) means that runs GD on the kth device E times.

First, let us try to compute G2
k (x) as

G2
k (x) = Gk(Gk(x)) = Gk((I − sA>k Ak)x + sA>k bk)

= (I − sA>k Ak)((I − sA>k Ak)x + sA>k bk) + sA>k bk

= (I − sA>k Ak)
2x + s[I + (I − sA>k Ak)]A>k bk.

By induction, you can obtain that

GE
k (x) = (I − sA>k Ak)

Ex + s[
E−1

∑
e=0

(I − sA>k Ak)
e]A>k bk. (4)

Thus,

xt+1 = x̄t+1/2 =
1
K ∑

k
xt+1/2

k =
1
K ∑

k
GE

k (x
t
k)

=
1
K ∑

k
GE

k (x
t) =

1
K
[

K

∑
k=1

(I − sA>k Ak)
E]xt +

s
K

K

∑
k=1
{[

E−1

∑
e=0

(I − sA>k Ak)
e]A>k bk}.

2

That is xt+1 = Bxt + C, where

B =
1
K ∑

k
GE

k (x
t) =

1
K
[

K

∑
k=1

(I − sA>k Ak)
E]

and

C =
s
K

K

∑
k=1
{[

E−1

∑
e=0

(I − sA>k Ak)
e]A>k bk}.

We konw that

xt+1 = Bt+1x0 + (I + B + · · ·+ Bt)C

= Bt+1x0 + (I − B)−1(I − Bt+1)C.

So,

x∗FGD = lim
t→∞

xt = (I − B)−1C.

1.1 FedAvg and Local SGD

FedAvg algorithm is proposed by [MMR+17] for training deep models distributed and efficiently.

Algorithm 1 Local Stochastic Gradient Descent

1: Input: Assumes that K clients index by k, B is the local mini-batch number, E is the number of local epochs, η is the

learning rate x0 ∈ Rn, and t = 0.

2: for t = 0, 1, . . . , T do

3: for k ∈ 1, . . . , K do

4: In parallel

xt+1
k ← xt

k − η∇ fk(x
t
k; zB),

where zB is the batch samples with size B.

5: end for

6: xt+1 ← ∑K
k=1

mk
m xt+1

k and t := t + 1.

7: end for

8: Output: xT .

Let us summary the local SGD algorithm as follows:

• Local Update:

xt+i+1
k ← xt+i

k − st+i∇ fk(x
t+i
k , ξt+i

k), i = 0, . . . , E− 1,

where ξt+i
k is a sample uniformly chosen from the local data and st+i is the learning rate.

• Server Update by Aggregation:

xt+E ←
K

∑
k=1

pkxt+E
k .

3

• Update Local Parameter:

xt+E
k ← xt+E, ∀k = 1, . . . , K.

Let T be the total interactions, then [2T/E] is the communication number.

2 Block Coordinate Descent

2.1 Motivation

Let us recall the SGD, SVRG, FedAvg. They all consider a big data setting. For example, the ERM problem

(finite-summation optimization):

min
x

1
m

m

∑
i=1

f (x; zi).

Using GD,

xt+1 = xt − st

m

m

∑
i=1
∇ f (xt, zi).

The summation is so big due to the big data setting. The basic idea is the “sample decomposition”. SGD and

FedAvg are the main instants.

Another type problem is sightly different, which involves so many decision variables in stead of the sample

size called “high-dimensional problems”.

Example 2.1. For the least squares problem,

x∗ ∈ arg min
x

1
2
‖Ax− b‖2,

where x∗ = (A>A)−1 A>b. Computing (A>A)−1, we need O(n3) which is determined by the number of

decision. variables. Even if we can use GD,

xt+1 = (I − st A>A)xt + st A>b.

Computing A>A of each iterative step need O(n2m) which is prohibited for large n.

Example 2.2. Let us consider LASSO problem again.

min
x

1
2
‖Ax− b‖2 + λ‖x‖1 =

1
2
‖Ax− b‖2 +

n

∑
j=1
|xj|.

In this model, maybe n is so large.

4

General Formulation:

min
x

f (x) = f (x1, x2, . . . , xK) +
K

∑
k=1

rk(xk), (5)

where xk ∈ Rnk and ∑k nk = n which means the decision variables are decomposed into K groups. If K = n,

then xk ∈ R. In this part, we assume that f ∈ C1 and rk, k ∈ [K] are convex.

2.2 BCD

Suppose that we have an iterative algorithm to obtain xt, then define that

f t
k(xk) := f (xt

1, xt
2, . . . , xt

k−1, xk, xt
k+1, . . . , xt

K). (6)

Solve a sub-optimization problem of Eq.(5).

(i) xt+1
k = arg minxk{ f t

k(xk) + rk(xk)}.

(ii) xt+1
k = arg minxk{ f t

k(xk) +
1
2‖xk − xt

k‖
2 + rk(xk)}.

(iii) xt+1
k = arg minxk{

1
2‖xk − xt

k‖
2 +

〈
∇ f t

k(xk), xk − xt
k
〉
+ rk(xk)}.

Using item 1
2‖xk − xt

k‖
2 is to control the xt+1 is not far away from xt

k in a certain sense.

References

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks from decentralized data. In Artificial

intelligence and statistics, pages 1273–1282. PMLR, 2017.

5

	Federated Optimization
	FedAvg and Local SGD

	Block Coordinate Descent
	Motivation
	BCD

